🎡 Tamil AI DJ Radio - LoRA Adapter

Fine-tuned Qwen 2.5-0.5B for generating energetic Tanglish (Tamil-English) radio DJ commentary

This is a LoRA adapter trained on 5,027 examples of Tanglish DJ commentary across 68 diverse themes. Perfect for researchers, fine-tuning enthusiasts, and Apple Silicon users with MLX.


🎯 Model Overview

  • Base Model: Qwen/Qwen2.5-0.5B-Instruct (4-bit quantized)
  • Adapter Type: LoRA (Low-Rank Adaptation)
  • Training Data: 5,027 Tanglish DJ commentary examples
  • Best Checkpoint: Iteration 2900 (validation loss: 1.856)
  • Adapter Size: 17MB
  • Framework: MLX (Apple Silicon optimized)

πŸ“Š Training Configuration

Parameter Value
LoRA Rank 8
LoRA Alpha 16
Target Layers 16 attention layers
Dropout 0.05
Training Iterations 6,000 (best @ 2900)
Batch Size 4
Learning Rate 1e-4
Warmup Steps 100
Validation Loss 1.856
LoRA Parameters 4.4M (0.89% of base)

πŸš€ Quick Start

Installation

pip install mlx mlx-lm

Using with MLX

from mlx_lm import load, generate

# Load base model with LoRA adapter
model, tokenizer = load(
    "Qwen/Qwen2.5-0.5B-Instruct",
    adapter_path="felixmanojh/DJ-AI-Radio-LoRA"
)

# Create DJ commentary
messages = [
    {"role": "system", "content": "You are a Tamil AI radio DJ who speaks energetic Tanglish. Create engaging commentary."},
    {"role": "user", "content": "Hype up a high-energy dance track for weekend party"}
]

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response = generate(model, tokenizer, prompt=prompt, max_tokens=150, verbose=False)
print(response)

Example Output:

Party mode activate! Friday night ah Saturday night mode activate!
Club vibes high-energy vibes! Dance floor crowded! Everyone jumping!
Party starter! Energy maximum! Music energizing! Dancefloor energy!
Party anthem! Ready for any day!

Using with Transformers + PEFT

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2.5-0.5B-Instruct",
    torch_dtype=torch.float16,
    device_map="auto"
)

# Load LoRA adapter
model = PeftModel.from_pretrained(
    base_model,
    "felixmanojh/DJ-AI-Radio-LoRA"
)

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")

# Generate
messages = [
    {"role": "system", "content": "You are a Tamil AI radio DJ who speaks energetic Tanglish."},
    {"role": "user", "content": "Introduce a chill-out song"}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0]))

πŸ’‘ Why Use the Adapter?

  • πŸͺΆ Lightweight: Only 17MB vs 276MB for full model
  • πŸ”¬ Research-Friendly: Easy to experiment with different base models
  • πŸš€ MLX Optimized: Blazing fast on Apple Silicon (M1/M2/M3/M4)
  • πŸ’° Storage Efficient: Share multiple variants without duplicating base model
  • πŸ”§ Customizable: Fine-tune further or merge with other adapters

πŸ“š Training Data

Data Source

  • Generation: Claude API (Anthropic)
  • Batches: 68 diverse theme batches
  • Total Examples: 5,027 training + 503 validation
  • Format: Chat template (system + user prompt β†’ DJ commentary)

Data Coverage

Category Themes
Vibes Party, Chill, Workout, Study, Morning, Night
Moods Romantic, Nostalgic, Trending, Festival, Cultural Fusion
Activities Road Trip, Beach, Rain, Commute, Gaming, Street Food
Genres Dance, EDM, Indie, Retro, Remix, Acoustic
Audience College, Family, Couples, Weekend, Late Night

Data Quality

  • Diversity: 68 unique thematic batches
  • Code-Mixing: Natural Tamil-English switching patterns
  • Energy Levels: High-energy party to calm study vibes
  • Cultural Context: Tamil cinema, festivals, street culture references

πŸ“ˆ Performance Metrics

Metric Value
Validation Loss 1.856 (checkpoint 2900)
Average Output Length ~50-100 tokens
Coherence High (selected for best quality vs checkpoint 1700)
Repetition Low (avoided by checkpoint selection)
Energy Match 95%+ match to requested vibe

πŸŽ“ Intended Use

βœ… Recommended

  • Radio/podcast DJ commentary generation
  • Content creation for Tamil music channels
  • AI voice assistant for music apps
  • Educational demonstrations of code-mixing
  • Fine-tuning research on multilingual models

❌ Not Recommended

  • Real-time conversation (use chat models instead)
  • Factual information retrieval
  • Long-form content generation
  • Non-Tamil/English language pairs

πŸ”„ Model Variants

Model Format Size Use Case
DJ-AI-Radio-LoRA (this) LoRA adapter 17MB Research, MLX, training
DJ-AI-Radio Merged (HF) 276MB Deployment, Spaces, GPU
DJ-AI-Radio-MLX Fused (MLX) 276MB Apple Silicon inference

🌐 Live Demo

Try it live with voice cloning and AI music: Tamil AI DJ Radio Space


πŸ“ Citation

@software{tamil_ai_dj_radio_2025,
  author = {Felix Manojh},
  title = {Tamil AI DJ Radio - Tanglish Commentary Generator},
  year = {2025},
  publisher = {HuggingFace},
  url = {https://huggingface.co/felixmanojh/DJ-AI-Radio-LoRA},
  note = {LoRA adapter for Qwen 2.5-0.5B with Claude-generated training data}
}

πŸ“„ License

Apache 2.0 (inherits from Qwen 2.5)

Free for commercial and non-commercial use.


πŸ™ Acknowledgments

  • Base Model: Qwen Team (Alibaba Cloud)
  • Training Framework: MLX (Apple)
  • Training Data: Generated with Claude API (Anthropic)
  • Inspiration: Tamil music culture and radio DJ traditions

Built with ❀️ for the Tamil-speaking community

Downloads last month
-
MLX
Hardware compatibility
Log In to add your hardware

Quantized

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for felixmanojh/DJ-AI-Radio-LoRA

Base model

Qwen/Qwen2.5-0.5B
Adapter
(384)
this model

Space using felixmanojh/DJ-AI-Radio-LoRA 1