Dataset Viewer
Auto-converted to Parquet Duplicate
qid
stringlengths
6
6
did
stringlengths
9
9
score
int32
1
1
Q12250
D36100615
1
Q12249
D24100041
1
Q12260
D24100045
1
Q12282
D14100287
1
Q12311
D13100336
1
Q12311
D13100770
1
Q12311
D13100771
1
Q12311
D13100772
1
Q12304
D14100001
1
Q12305
D33100163
1
Q12306
D13100354
1
Q12342
D11100222
1
Q12341
D18100005
1
Q12330
D14100296
1
Q12330
D14100022
1
Q12335
D33100132
1
Q12336
D32100441
1
Q12344
D37100003
1
Q12348
D36100222
1
Q12365
D18100004
1
Q12374
D36100104
1
Q12374
D36100128
1
Q12374
D12100011
1
Q12376
D24100003
1
Q12380
D11100066
1
Q12380
D11100135
1
Q12397
D14100292
1
Q12386
D33100214
1
Q12386
D33100268
1
Q12386
D33100267
1
Q12386
D33100269
1
Q12401
D36100588
1
Q12410
D34100066
1
Q12435
D11100044
1
Q12422
D14100001
1
Q12431
D12100011
1
Q12445
D14100287
1
Q12449
D36100473
1
Q12451
D13100453
1
Q12456
D13100795
1
Q12456
D13100096
1
Q12475
D23100067
1
Q12475
D17100005
1
Q12483
D33100214
1
Q12483
D33100268
1
Q12483
D33100267
1
Q12483
D33100269
1
Q12502
D36100400
1
Q12502
D36100402
1
Q12518
D17100005
1
Q12518
D17100008
1
Q12528
D13100768
1
Q12528
D13100392
1
Q12528
D13100394
1
Q12537
D13100392
1
Q12541
D13100793
1
Q12574
D11100232
1
Q12574
D11100241
1
Q12574
D11100066
1
Q12583
D32100359
1
Q12583
D32100042
1
Q12584
D32100359
1
Q12584
D32100042
1
Q12587
D36100587
1
Q12587
D36100111
1
Q12586
D13100462
1
Q12604
D17100134
1
Q12596
D14100017
1
Q12598
D14100022
1
Q12600
D13100768
1
Q12610
D18100004
1
Q12610
D18100005
1
Q12611
D14100137
1
Q12614
D35100169
1
Q12616
D14100137
1
Q12619
D22100011
1
Q12638
D36100489
1
Q12639
D18100004
1
Q12627
D27100172
1
Q12629
D32100404
1
Q12629
D32100405
1
Q12629
D32100136
1
Q12642
D17100005
1
Q12645
D36100104
1
Q12647
D14100017
1
Q12649
D14100082
1
Q12662
D20100008
1
Q12670
D18100004
1
Q12716
D18100004
1
Q12693
D13100370
1
Q12693
D13100106
1
Q12693
D13100389
1
Q12693
D45100001
1
Q12695
D18100004
1
Q12681
D18100005
1
Q12714
D14100022
1
Q12721
D13100742
1
Q12748
D17100005
1
Q12748
D11100049
1
Q12748
D11100057
1
End of preview. Expand in Data Studio

StatCan Retrieval

This dataset is part of a Table + Text retrieval benchmark. Includes queries and relevance judgments across test split(s), with corpus in 1 format(s): corpus.

Configs

Config Description Split(s)
default Relevance judgments (qrels): qid, did, score test
queries Query IDs and text test_queries
corpus Plain text corpus: _id, title, text corpus

TableIR Benchmark Statistics

Dataset Structured #Train #Dev #Test #Corpus
OpenWikiTables 53.8k 6.6k 6.6k 24.7k
NQTables 9.6k 1.1k 1k 170k
FeTaQA 7.3k 1k 2k 10.3k
OTT-QA (small) 41.5k 2.2k -- 8.8k
MultiHierTT -- 929 -- 9.9k
AIT-QA -- -- 515 1.9k
StatcanRetrieval -- -- 870 5.9k
watsonxDocsQA -- -- 30 1.1k

Citation

If you use TableIR Eval: Table-Text IR Evaluation Collection, please cite:

@misc{doshi2026tableir,
  title        = {TableIR Eval: Table-Text IR Evaluation Collection},
  author       = {Doshi, Meet and Boni, Odellia and Kumar, Vishwajeet and Sen, Jaydeep and Joshi, Sachindra},
  year         = {2026},
  institution  = {IBM Research},
  howpublished = {https://huggingface.co/collections/ibm-research/table-text-ir-evaluation},
  note         = {Hugging Face dataset collection}
}

All credit goes to original authors. Please cite their work:

@inproceedings{lu-etal-2023-statcan,
    title = "The {S}tat{C}an Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents",
    author = "Lu, Xing Han  and
      Reddy, Siva  and
      de Vries, Harm",
    editor = "Vlachos, Andreas  and
      Augenstein, Isabelle",
    booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
    month = may,
    year = "2023",
    address = "Dubrovnik, Croatia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.eacl-main.206/",
    doi = "10.18653/v1/2023.eacl-main.206",
    pages = "2799--2829",
    abstract = "We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users."
}
Downloads last month
6

Collection including ibm-research/StatCanDialogueRetrieval