BAP-Labs-M1

LoRA adapter for Hermes-2-Pro-Mistral-7B fine-tuned to generate Serum synthesizer preset parameters from natural language descriptions.

Model Details

  • Base Model: NousResearch/Hermes-2-Pro-Mistral-7B
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Training Framework: MLX-LM (Apple Silicon optimized)
  • Task: Text-to-Synthesizer-Parameters generation

Training Configuration

  • Dataset: 897 examples of natural language descriptions paired with Serum preset parameters
  • Training Split: 90/10 (807 train / 90 validation)
  • Iterations: 300
  • Batch Size: 8
  • Learning Rate: 3e-4
  • LoRA Layers: 16
  • Trainable Parameters: 1.704M (0.024% of base model)

Training Results

  • Final Train Loss: 0.782
  • Final Validation Loss: 0.757
  • Training Time: ~5.5 hours on M4 Max
  • Peak Memory: 62.8 GB

Usage

With MLX-LM

from mlx_lm import load, generate

# Load model with LoRA adapter
model, tokenizer = load(
    "NousResearch/Hermes-2-Pro-Mistral-7B",
    adapter_path="bapinero/BAP-Labs-M1"
)

# Generate Serum preset parameters
prompt = """<|im_start|>system
You are a Serum synthesizer preset designer. Generate JSON parameter changes for Serum presets based on natural language descriptions.<|im_end|>
<|im_start|>user
Create a deep dubstep bass with lots of wobble<|im_end|>
<|im_start|>assistant
"""

response = generate(model, tokenizer, prompt=prompt, max_tokens=500, temp=0.7)
print(response)

Command Line

mlx_lm.generate \
  --model NousResearch/Hermes-2-Pro-Mistral-7B \
  --adapter-path bapinero/BAP-Labs-M1 \
  --prompt "Create a bright future bass lead" \
  --max-tokens 500 \
  --temp 0.7

Output Format

The model generates JSON with Serum parameter changes:

{
  "parameter_changes": [
    {"parameter_index": 22, "new_value": 0.85},
    {"parameter_index": 77, "new_value": 0.12},
    ...
  ]
}

Limitations

  • Trained specifically for Serum synthesizer (448 mapped parameters)
  • Best results with genre-specific descriptions (dubstep, house, bass music, etc.)
  • Optimized for MLX framework (Apple Silicon)

License

Based on Hermes-2-Pro-Mistral-7B. Please refer to base model license.

Citation

@misc{bap-labs-m1,
  author = {BAP Labs},
  title = {BAP-Labs-M1: Serum Synthesizer Control via LLM},
  year = {2025},
  publisher = {HuggingFace},
  url = {https://huggingface.co/bapinero/BAP-Labs-M1}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
MLX
Hardware compatibility
Log In to add your hardware

Quantized

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bapinero/BAP-Labs-M1

Adapter
(235)
this model