Eve-Coder-272M
This is a Supervised Fine-Tuned (SFT) adapter for the anthonym21/Eve-2-MoE-272M base model.
Model Details
- Task: Python coding specialist fine-tuned on The Stack.
- Base Architecture: DeepSeek-MoE (Shared Expert + Routed Experts)
- Parameters: 272M (Total)
- Fine-Tuning Method: LoRA
How to Use
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# 1. Load Base Model
base_model = AutoModelForCausalLM.from_pretrained(
"anthonym21/Eve-2-MoE-272M",
trust_remote_code=True,
device_map="cuda"
)
# 2. Load This Adapter
model = PeftModel.from_pretrained(base_model, "anthonym21/Eve-Coder-272M")
# 3. Run
tokenizer = AutoTokenizer.from_pretrained("anthonym21/Eve-2-MoE-272M")
inputs = tokenizer("Hello Eve!", return_tensors="pt").to("cuda")
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for anthonym21/Eve-Coder-272M
Base model
anthonym21/Eve-2-MoE-272M