FireRedASR2S
A SOTA Industrial-Grade All-in-One ASR System

[Paper] [Model] [Blog] [Demo]

FireRedASR2S is a state-of-the-art (SOTA), industrial-grade, all-in-one ASR system with ASR, VAD, LID, and Punc modules. All modules achieve SOTA performance:

  • FireRedASR2: Automatic Speech Recognition (ASR) supporting Chinese (Mandarin, 20+ dialects/accents), English, code-switching, and singing lyrics recognition. 2.89% average CER on Mandarin (4 test sets), 11.55% on Chinese dialects (19 test sets), outperforming Doubao-ASR, Qwen3-ASR-1.7B, Fun-ASR, and Fun-ASR-Nano-2512. FireRedASR2-AED also supports word-level timestamps and confidence scores.
  • FireRedVAD: Voice Activity Detection (VAD) supporting speech/singing/music in 100+ languages. 97.57% F1, outperforming Silero-VAD, TEN-VAD, and FunASR-VAD. Supports non-streaming/streaming VAD and Audio Event Detection.
  • FireRedLID: Spoken Language Identification (LID) supporting 100+ languages and 20+ Chinese dialects/accents. 97.18% accuracy, outperforming Whisper and SpeechBrain-LID.
  • FireRedPunc: Punctuation Prediction (Punc) for Chinese and English. 78.90% average F1, outperforming FunASR-Punc (62.77%).

2S: 2nd-generation FireRedASR, now expanded to an all-in-one ASR System

🔥 News

  • [2026.02.12] We release FireRedASR2S (FireRedASR2-AED, FireRedVAD, FireRedLID, and FireRedPunc) with model weights and inference code. Download links below. Technical report and finetuning code coming soon.

Available Models and Languages

Model Supported Languages & Dialects Download
FireRedASR2 Chinese (Mandarin and 20+ dialects/accents*), English, Code-Switching 🤗 | 🤖
FireRedVAD 100+ languages, 20+ Chinese dialects/accents* 🤗 | 🤖
FireRedLID 100+ languages, 20+ Chinese dialects/accents* 🤗 | 🤖
FireRedPunc Chinese, English 🤗 | 🤖

*Supported Chinese dialects/accents: Cantonese (Hong Kong & Guangdong), Sichuan, Shanghai, Wu, Minnan, Anhui, Fujian, Gansu, Guizhou, Hebei, Henan, Hubei, Hunan, Jiangxi, Liaoning, Ningxia, Shaanxi, Shanxi, Shandong, Tianjin, Yunnan, etc.

Method

FireRedASR2

FireRedASR2 builds upon FireRedASR with improved accuracy, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. It comprises two variants:

  • FireRedASR2-LLM: Designed to achieve state-of-the-art performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities.
  • FireRedASR2-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture.

Other Modules

  • FireRedVAD: DFSMN-based non-streaming/streaming Voice Activity Detection and Audio Event Detection.
  • FireRedLID: FireRedASR2-based Spoken Language Identification. See FireRedLID README for language details.
  • FireRedPunc: BERT-based Punctuation Prediction.

Evaluation

FireRedASR2

Metrics: Character Error Rate (CER%) for Chinese and Word Error Rate (WER%) for English. Lower is better.

We evaluate FireRedASR2 on 24 public test sets covering Mandarin, 20+ Chinese dialects/accents, and singing.

  • Mandarin (4 test sets): 2.89% (LLM) / 3.05% (AED) average CER, outperforming Doubao-ASR (3.69%), Qwen3-ASR-1.7B (3.76%), Fun-ASR (4.16%) and Fun-ASR-Nano-2512 (4.55%).
  • Dialects (19 test sets): 11.55% (LLM) / 11.67% (AED) average CER, outperforming Doubao-ASR (15.39%), Qwen3-ASR-1.7B (11.85%), Fun-ASR (12.76%) and Fun-ASR-Nano-2512 (15.07%).

Note: ws=WenetSpeech, md=MagicData, conv=Conversational, daily=Daily-use.

ID Testset\Model FireRedASR2-LLM FireRedASR2-AED Doubao-ASR Qwen3-ASR Fun-ASR Fun-ASR-Nano
Average CER
(All, 1-24)
9.67 9.80 12.98 10.12 10.92 12.81
Average CER
(Mandarin, 1-4)
2.89 3.05 3.69 3.76 4.16 4.55
Average CER
(Dialects, 5-23)
11.55 11.67 15.39 11.85 12.76 15.07
1 aishell1 0.64 0.57 1.52 1.48 1.64 1.96
2 aishell2 2.15 2.51 2.77 2.71 2.38 3.02
3 ws-net 4.44 4.57 5.73 4.97 6.85 6.93
4 ws-meeting 4.32 4.53 4.74 5.88 5.78 6.29
5 kespeech 3.08 3.60 5.38 5.10 5.36 7.66
6 ws-yue-short 5.14 5.15 10.51 5.82 7.34 8.82
7 ws-yue-long 8.71 8.54 11.39 8.85 10.14 11.36
8 ws-chuan-easy 10.90 10.60 11.33 11.99 12.46 14.05
9 ws-chuan-hard 20.71 21.35 20.77 21.63 22.49 25.32
10 md-heavy 7.42 7.43 7.69 8.02 9.13 9.97
11 md-yue-conv 12.23 11.66 26.25 9.76 33.71 15.68
12 md-yue-daily 3.61 3.35 12.82 3.66 2.69 5.67
13 md-yue-vehicle 4.50 4.83 8.66 4.28 6.00 7.04
14 md-chuan-conv 13.18 13.07 11.77 14.35 14.01 17.11
15 md-chuan-daily 4.90 5.17 3.90 4.93 3.98 5.95
16 md-shanghai-conv 28.70 27.02 45.15 29.77 25.49 37.08
17 md-shanghai-daily 24.94 24.18 44.06 23.93 12.55 28.77
18 md-wu 7.15 7.14 7.70 7.57 10.63 10.56
19 md-zhengzhou-conv 10.20 10.65 9.83 9.55 10.85 13.09
20 md-zhengzhou-daily 5.80 6.26 5.77 5.88 6.29 8.18
21 md-wuhan 9.60 10.81 9.94 10.22 4.34 8.70
22 md-tianjin 15.45 15.30 15.79 16.16 19.27 22.03
23 md-changsha 23.18 25.64 23.76 23.70 25.66 29.23
24 opencpop 1.12 1.17 4.36 2.57 3.05 2.95

Doubao-ASR (volc.seedasr.auc) tested in early February 2026, and Fun-ASR tested in late November 2025. Our ASR training data does not include any Chinese dialect or accented speech data from MagicData.

FireRedVAD

We evaluate FireRedVAD on FLEURS-VAD-102, a multilingual VAD benchmark covering 102 languages.

FireRedVAD achieves SOTA performance, outperforming Silero-VAD, TEN-VAD, FunASR-VAD, and WebRTC-VAD.

Metric\Model FireRedVAD Silero-VAD TEN-VAD FunASR-VAD WebRTC-VAD
AUC-ROC↑ 99.60 97.99 97.81 - -
F1 score↑ 97.57 95.95 95.19 90.91 52.30
False Alarm Rate↓ 2.69 9.41 15.47 44.03 2.83
Miss Rate↓ 3.62 3.95 2.95 0.42 64.15

*FLEURS-VAD-102: We randomly selected ~100 audio files per language from FLEURS test set, resulting in 9,443 audio files with manually annotated binary VAD labels (speech=1, silence=0). This VAD testset will be open sourced (coming soon).

Note: FunASR-VAD achieves low Miss Rate but at the cost of high False Alarm Rate (44.03%), indicating over-prediction of speech segments.

FireRedLID

Metric: Utterance-level LID Accuracy (%). Higher is better.

We evaluate FireRedLID on multilingual and Chinese dialect benchmarks.

FireRedLID achieves SOTA performance, outperforming Whisper, SpeechBrain-LID, and Dolphin.

Testset\Model Languages FireRedLID Whisper SpeechBrain Dolphin
FLEURS test 82 languages 97.18 79.41 92.91 -
CommonVoice test 74 languages 92.07 80.81 78.75 -
KeSpeech + MagicData 20+ Chinese dialects/accents 88.47 - - 69.01

FireRedPunc

Metric: Precision/Recall/F1 Score (%). Higher is better.

We evaluate FireRedPunc on multi-domain Chinese and English benchmarks.

FireRedPunc achieves SOTA performance, outperforming FunASR-Punc (CT-Transformer).

Testset\Model #Sentences FireRedPunc FunASR-Punc
Multi-domain Chinese 88,644 82.84 / 83.08 / 82.96 77.27 / 74.03 / 75.62
Multi-domain English 28,641 78.40 / 71.57 / 74.83 55.79 / 45.15 / 49.91
Average F1 Score - 78.90 62.77

Quick Start

Setup

  1. Create a clean Python environment:
$ conda create --name fireredasr2s python=3.10
$ conda activate fireredasr2s
$ git clone https://github.com/FireRedTeam/FireRedASR2S.git
$ cd FireRedASR2S  # or fireredasr2s
  1. Install dependencies and set up PATH and PYTHONPATH:
$ pip install -r requirements.txt
$ export PATH=$PWD/fireredasr2s/:$PATH
$ export PYTHONPATH=$PWD/:$PYTHONPATH
  1. Download models:
# Download via ModelScope (recommended for users in China)
pip install -U modelscope
modelscope download --model FireRedTeam/FireRedASR2-AED --local_dir ./pretrained_models/FireRedASR2-AED
modelscope download --model FireRedTeam/FireRedVAD --local_dir ./pretrained_models/FireRedVAD
modelscope download --model FireRedTeam/FireRedLID --local_dir ./pretrained_models/FireRedLID
modelscope download --model FireRedTeam/FireRedPunc --local_dir ./pretrained_models/FireRedPunc

# Download via Hugging Face
pip install -U "huggingface_hub[cli]"
huggingface-cli download FireRedTeam/FireRedASR2-AED --local-dir ./pretrained_models/FireRedASR2-AED
huggingface-cli download FireRedTeam/FireRedVAD --local-dir ./pretrained_models/FireRedVAD
huggingface-cli download FireRedTeam/FireRedLID --local-dir ./pretrained_models/FireRedLID
huggingface-cli download FireRedTeam/FireRedPunc --local-dir ./pretrained_models/FireRedPunc
  1. Convert your audio to 16kHz 16-bit mono PCM format if needed:
$ ffmpeg -i <input_audio_path> -ar 16000 -ac 1 -acodec pcm_s16le -f wav <output_wav_path>

Script Usage

$ cd examples_infer/asr_system
$ bash inference_asr_system.sh

Command-line Usage

$ fireredasr2s-cli --help
$ fireredasr2s-cli --wav_paths "assets/hello_zh.wav" "assets/hello_en.wav" --outdir output
$ cat output/result.jsonl 
# {"uttid": "hello_zh", "text": "你好世界。", "sentences": [{"start_ms": 310, "end_ms": 1840, "text": "你好世界。", "asr_confidence": 0.875, "lang": "zh mandarin", "lang_confidence": 0.999}], "vad_segments_ms": [[310, 1840]], "dur_s": 2.32, "words": [{"start_ms": 490, "end_ms": 690, "text": "你"}, {"start_ms": 690, "end_ms": 1090, "text": "好"}, {"start_ms": 1090, "end_ms": 1330, "text": "世"}, {"start_ms": 1330, "end_ms": 1795, "text": "界"}], "wav_path": "assets/hello_zh.wav"}
# {"uttid": "hello_en", "text": "Hello speech.", "sentences": [{"start_ms": 120, "end_ms": 1840, "text": "Hello speech.", "asr_confidence": 0.833, "lang": "en", "lang_confidence": 0.998}], "vad_segments_ms": [[120, 1840]], "dur_s": 2.24, "words": [{"start_ms": 340, "end_ms": 1020, "text": "hello"}, {"start_ms": 1020, "end_ms": 1666, "text": "speech"}], "wav_path": "assets/hello_en.wav"}

Python API Usage

from fireredasr2s import FireRedAsr2System, FireRedAsr2SystemConfig

asr_system_config = FireRedAsr2SystemConfig()  # Use default config
asr_system = FireRedAsr2System(asr_system_config)

result = asr_system.process("assets/hello_zh.wav")
print(result)
# {'uttid': 'tmpid', 'text': '你好世界。', 'sentences': [{'start_ms': 440, 'end_ms': 1820, 'text': '你好世界。', 'asr_confidence': 0.868, 'lang': 'zh mandarin', 'lang_confidence': 0.999}], 'vad_segments_ms': [(440, 1820)], 'dur_s': 2.32, 'words': [], 'wav_path': 'assets/hello_zh.wav'}

result = asr_system.process("assets/hello_en.wav")
print(result)
# {'uttid': 'tmpid', 'text': 'Hello speech.', 'sentences': [{'start_ms': 260, 'end_ms': 1820, 'text': 'Hello speech.', 'asr_confidence': 0.933, 'lang': 'en', 'lang_confidence': 0.993}], 'vad_segments_ms': [(260, 1820)], 'dur_s': 2.24, 'words': [], 'wav_path': 'assets/hello_en.wav'}

Usage of Each Module

The four components under fireredasr2s, i.e. fireredasr2, fireredvad, fireredlid, and fireredpunc are self-contained and designed to work as a standalone modules. You can use any of them independently without depending on the others. FireRedVAD and FireRedLID will also be open-sourced as standalone libraries in separate repositories.

Script Usage

# ASR
$ cd examples_infer/asr
$ bash inference_asr_aed.sh
$ bash inference_asr_llm.sh

# VAD & AED (Audio Event Detection)
$ cd examples_infer/vad
$ bash inference_vad.sh
$ bash inference_streamvad.sh
$ bash inference_aed.sh

# LID
$ cd examples_infer/lid
$ bash inference_lid.sh

# Punc
$ cd examples_infer/punc
$ bash inference_punc.sh

Python API Usage

Set up PYTHONPATH first: export PYTHONPATH=$PWD/:$PYTHONPATH

ASR

from fireredasr2s.fireredasr2 import FireRedAsr2, FireRedAsr2Config

batch_uttid = ["hello_zh", "hello_en"]
batch_wav_path = ["assets/hello_zh.wav", "assets/hello_en.wav"]

# FireRedASR2-AED
asr_config = FireRedAsr2Config(
    use_gpu=True,
    use_half=False,
    beam_size=3,
    nbest=1,
    decode_max_len=0,
    softmax_smoothing=1.25,
    aed_length_penalty=0.6,
    eos_penalty=1.0,
    return_timestamp=True
)
model = FireRedAsr2.from_pretrained("aed", "pretrained_models/FireRedASR2-AED", asr_config)
results = model.transcribe(batch_uttid, batch_wav_path)
print(results)
# [{'uttid': 'hello_zh', 'text': '你好世界', 'confidence': 0.971, 'dur_s': 2.32, 'rtf': '0.0870', 'wav': 'assets/hello_zh.wav', 'timestamp': [('你', 0.42, 0.66), ('好', 0.66, 1.1), ('世', 1.1, 1.34), ('界', 1.34, 2.039)]}, {'uttid': 'hello_en', 'text': 'hello speech', 'confidence': 0.943, 'dur_s': 2.24, 'rtf': '0.0870', 'wav': 'assets/hello_en.wav', 'timestamp': [('hello', 0.34, 0.98), ('speech', 0.98, 1.766)]}]

# FireRedASR2-LLM
asr_config = FireRedAsr2Config(
    use_gpu=True,
    decode_min_len=0,
    repetition_penalty=1.0,
    llm_length_penalty=0.0,
    temperature=1.0
)
model = FireRedAsr2.from_pretrained("llm", "pretrained_models/FireRedASR2-LLM", asr_config)
results = model.transcribe(batch_uttid, batch_wav_path)
print(results)
# [{'uttid': 'hello_zh', 'text': '你好世界', 'rtf': '0.0681', 'wav': 'assets/hello_zh.wav'}, {'uttid': 'hello_en', 'text': 'hello speech', 'rtf': '0.0681', 'wav': 'assets/hello_en.wav'}]

VAD

from fireredasr2s.fireredvad import FireRedVad, FireRedVadConfig

vad_config = FireRedVadConfig(
    use_gpu=False,
    smooth_window_size=5,
    speech_threshold=0.4,
    min_speech_frame=20,
    max_speech_frame=2000,
    min_silence_frame=20,
    merge_silence_frame=0,
    extend_speech_frame=0,
    chunk_max_frame=30000)
vad = FireRedVad.from_pretrained("pretrained_models/FireRedVAD/VAD", vad_config)

result, probs = vad.detect("assets/hello_zh.wav")

print(result)
# {'dur': 2.32, 'timestamps': [(0.44, 1.82)], 'wav_path': 'assets/hello_zh.wav'}

Stream VAD

Click to expand
from fireredasr2s.fireredvad import FireRedStreamVad, FireRedStreamVadConfig

vad_config=FireRedStreamVadConfig(
    use_gpu=False,
    smooth_window_size=5,
    speech_threshold=0.4,
    pad_start_frame=5,
    min_speech_frame=8,
    max_speech_frame=2000,
    min_silence_frame=20,
    chunk_max_frame=30000)
stream_vad = FireRedStreamVad.from_pretrained("pretrained_models/FireRedVAD/Stream-VAD", vad_config)

frame_results, result = stream_vad.detect_full("assets/hello_zh.wav")

print(result)
# {'dur': 2.32, 'timestamps': [(0.46, 1.84)], 'wav_path': 'assets/hello_zh.wav'}

Audio Event Detection (AED)

Click to expand
from fireredasr2s.fireredvad import FireRedAed, FireRedAedConfig

aed_config=FireRedAedConfig(
    use_gpu=False,
    smooth_window_size=5,
    speech_threshold=0.4,
    singing_threshold=0.5,
    music_threshold=0.5,
    min_event_frame=20,
    max_event_frame=2000,
    min_silence_frame=20,
    merge_silence_frame=0,
    extend_speech_frame=0,
    chunk_max_frame=30000)
aed = FireRedAed.from_pretrained("pretrained_models/FireRedVAD/AED", aed_config)

result, probs = aed.detect("assets/event.wav")

print(result)
# {'dur': 22.016, 'event2timestamps': {'speech': [(0.4, 3.56), (3.66, 9.08), (9.27, 9.77), (10.78, 21.76)], 'singing': [(1.79, 19.96), (19.97, 22.016)], 'music': [(0.09, 12.32), (12.33, 22.016)]}, 'event2ratio': {'speech': 0.848, 'singing': 0.905, 'music': 0.991}, 'wav_path': 'assets/event.wav'}

LID

Click to expand
from fireredasr2s.fireredlid import FireRedLid, FireRedLidConfig

batch_uttid = ["hello_zh", "hello_en"]
batch_wav_path = ["assets/hello_zh.wav", "assets/hello_en.wav"]

config = FireRedLidConfig(use_gpu=True, use_half=False)
model = FireRedLid.from_pretrained("pretrained_models/FireRedLID", config)

results = model.process(batch_uttid, batch_wav_path)
print(results)
# [{'uttid': 'hello_zh', 'lang': 'zh mandarin', 'confidence': 0.996, 'dur_s': 2.32, 'rtf': '0.0741', 'wav': 'assets/hello_zh.wav'}, {'uttid': 'hello_en', 'lang': 'en', 'confidence': 0.996, 'dur_s': 2.24, 'rtf': '0.0741', 'wav': 'assets/hello_en.wav'}]

Punc

Click to expand
from fireredasr2s.fireredpunc.punc import FireRedPunc, FireRedPuncConfig

config = FireRedPuncConfig(use_gpu=True)
model = FireRedPunc.from_pretrained("pretrained_models/FireRedPunc", config)

batch_text = ["你好世界", "Hello world"]
results = model.process(batch_text)

print(results)
# [{'punc_text': '你好世界。', 'origin_text': '你好世界'}, {'punc_text': 'Hello world!', 'origin_text': 'Hello world'}]

ASR System

from fireredasr2s.fireredasr2 import FireRedAsr2Config
from fireredasr2s.fireredlid import FireRedLidConfig
from fireredasr2s.fireredpunc import FireRedPuncConfig
from fireredasr2s.fireredvad import FireRedVadConfig
from fireredasr2s import FireRedAsr2System, FireRedAsr2SystemConfig

vad_config = FireRedVadConfig(
    use_gpu=False,
    smooth_window_size=5,
    speech_threshold=0.4,
    min_speech_frame=20,
    max_speech_frame=2000,
    min_silence_frame=20,
    merge_silence_frame=0,
    extend_speech_frame=0,
    chunk_max_frame=30000
)
lid_config = FireRedLidConfig(use_gpu=True, use_half=False)
asr_config = FireRedAsr2Config(
    use_gpu=True,
    use_half=False,
    beam_size=3,
    nbest=1,
    decode_max_len=0,
    softmax_smoothing=1.25,
    aed_length_penalty=0.6,
    eos_penalty=1.0,
    return_timestamp=True
)
punc_config = FireRedPuncConfig(use_gpu=True)

asr_system_config = FireRedAsr2SystemConfig(
    "pretrained_models/FireRedVAD/VAD",
    "pretrained_models/FireRedLID",
    "aed", "pretrained_models/FireRedASR2-AED",
    "pretrained_models/FireRedPunc",
    vad_config, lid_config, asr_config, punc_config,
    enable_vad=1, enable_lid=1, enable_punc=1
)
asr_system = FireRedAsr2System(asr_system_config)

batch_uttid = ["hello_zh", "hello_en"]
batch_wav_path = ["assets/hello_zh.wav", "assets/hello_en.wav"]
for wav_path, uttid in zip(batch_wav_path, batch_uttid):
    result = asr_system.process(wav_path, uttid)
    print(result)
# {'uttid': 'hello_zh', 'text': '你好世界。', 'sentences': [{'start_ms': 440, 'end_ms': 1820, 'text': '你好世界。', 'asr_confidence': 0.868, 'lang': 'zh mandarin', 'lang_confidence': 0.999}], 'vad_segments_ms': [(440, 1820)], 'dur_s': 2.32, 'words': [{'start_ms': 540, 'end_ms': 700, 'text': '你'}, {'start_ms': 700, 'end_ms': 1100, 'text': '好'}, {'start_ms': 1100, 'end_ms': 1300, 'text': '世'}, {'start_ms': 1300, 'end_ms': 1765, 'text': '界'}], 'wav_path': 'assets/hello_zh.wav'}
# {'uttid': 'hello_en', 'text': 'Hello speech.', 'sentences': [{'start_ms': 260, 'end_ms': 1820, 'text': 'Hello speech.', 'asr_confidence': 0.933, 'lang': 'en', 'lang_confidence': 0.993}], 'vad_segments_ms': [(260, 1820)], 'dur_s': 2.24, 'words': [{'start_ms': 400, 'end_ms': 960, 'text': 'hello'}, {'start_ms': 960, 'end_ms': 1666, 'text': 'speech'}], 'wav_path': 'assets/hello_en.wav'}

FAQ

Q: What audio format is supported?

16kHz 16-bit mono PCM wav. Use ffmpeg to convert other formats: ffmpeg -i <input_audio_path> -ar 16000 -ac 1 -acodec pcm_s16le -f wav <output_wav_path>

Q: What are the input length limitations of ASR models?

  • FireRedASR2-AED supports audio input up to 60s. Input longer than 60s may cause hallucination issues, and input exceeding 200s will trigger positional encoding errors.
  • FireRedASR2-LLM supports audio input up to 30s. The behavior for longer input is untested.

Acknowledgements

Thanks to the following open-source works:

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including FireRedTeam/FireRedPunc

Paper for FireRedTeam/FireRedPunc