File size: 35,453 Bytes
572ea0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:90000
- loss:QuantizationAwareLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: what is the difference between trojan virus and worm?
sentences:
- Worms spread from computer to computer, but unlike a virus, it has the capability
to travel without any help from a person. ... A Trojan horse is not a virus. It
is a destructive program that looks as a genuine application. Unlike viruses,
Trojan horses do not replicate themselves but they can be just as destructive.
- You're usually no longer infectious 24 hours after starting a course of antibiotics,
but this time period can sometimes vary. For example, the antibiotics may take
longer to work if your body takes longer to absorb them, or if you're taking other
medicine that interacts with the antibiotics.
- Eating salt raises the amount of sodium in your bloodstream and wrecks the delicate
balance, reducing the ability of your kidneys to remove the water. The result
is a higher blood pressure due to the extra fluid and extra strain on the delicate
blood vessels leading to the kidneys.
- source_sentence: which are the neighbouring countries of pakistan?
sentences:
- Pakistan is bordered by India on the east, the Arabian Sea on the south, Iran
on the southwest, and Afghanistan on the west and north; in the northeast is the
disputed territory (with India) of Kashmir, of which the part occupied by Pakistan
borders on China.
- Age is a big factor when it comes to how much sleep a dog needs. Just as human
babies need a lot of sleep, the AKC notes your puppy needs 15-20 hours of sleep
a day to help his central nervous system, immune system and muscles develop properly.
- 'Step 1: Connect your iPhone to your computer using n USB cable through any of
the USB ports available on your computer. Step 2: Open iTunes, click the "Files"
tab and check the boxes to sync or transfer your files. Step 3: Select your desired
destination folder for the files and click "Sync" to complete the transfer.'
- source_sentence: what can you do with 1gb of data?
sentences:
- You could even contact your email provider, complain that somebody else is using
your email address, and say that you are worried about your account being compromised.
They're very unlikely to do anything, but if something goes wrong, at least you
can prove you forewarned them.
- 1) Under Section 80CCD(1), investment in Atal Pension Yojana or NPS up to ₹ 1.5
lakh qualifies for income tax deduction. But remember that the total amount of
deduction under sections 80C, 80CCC and 80CCD cannot exceed ₹ 1.5 lakh.
- 1GB (or 1024MB) of data lets you send or receive about 1,000 emails and browse
the Internet for about 20 hours every month. (This limit relates only to your
1GB mobile data allocation; if you are an 'inclusive mobile broadband customer'
you also get 2000 BT Wi-fi wi-fi minutes every month.)
- source_sentence: how many carbon atoms are in carbon dioxide?
sentences:
- For CO2 there is one atom of carbon and two atoms of oxygen. For H2O, there is
one atom of oxygen and two atoms of hydrogen. A molecule can be made of only one
type of atom.
- Avian influenza refers to the disease caused by infection with avian (bird) influenza
(flu) Type A viruses. These viruses occur naturally among wild aquatic birds worldwide
and can infect domestic poultry and other bird and animal species. Avian flu viruses
do not normally infect humans.
- At the end of "Inception," Dom Cobb (Leonardo DiCaprio) finally returns home to
his kids after spending a long time in the dream world. Cobb carries a little
top with him. If the top keeps spinning, that means he is in a dream. ... The
final shot shows the top spinning, but it never reveals whether it falls over.
- source_sentence: is duchenne muscular dystrophy a dominant or recessive trait?
sentences:
- Duchenne muscular dystrophy is inherited in an X-linked recessive pattern. Males
have only one copy of the X chromosome from their mother and one copy of the Y
chromosome from their father. If their X chromosome has a DMD gene mutation, they
will have Duchenne muscular dystrophy.
- An automatic transmission will downshift for you when you drive uphill. However,
for moderately steep slopes, it's wise to shift to the gear range marked D2, 2,
or L to ascend and descend the hill. For steep slopes that you can't ascend at
a speed faster than 10 mph (about 15 kph), shift to D1 or 1.
- The dream suggests captivity and it refers to your fear of punishment. Another
interpretation of this dream refers to a need to do what you feel is right in
waking life. Being in jail suggests that your feelings may be trapped by a limited
mind and body. ... Jail also suggests repressed feelings.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 24.236900898755138
energy_consumed: 0.0905639330800724
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.293
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on GooAQ using QAT with InfoNCE + GOR
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: gooaq dev float32
type: gooaq-dev-float32
metrics:
- type: cosine_accuracy@1
value: 0.7419
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8825
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9237
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.96
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7419
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29416666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18474000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09600000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7419
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8825
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9237
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.96
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8536715392203515
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8192423412698366
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8211527599211433
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: gooaq dev int8
type: gooaq-dev-int8
metrics:
- type: cosine_accuracy@1
value: 0.7336
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8753
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.919
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9569
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7336
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2917666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18380000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09569000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7336
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8753
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.919
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9569
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8480672791448349
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8128262301587247
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8148631237973415
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: gooaq dev binary
type: gooaq-dev-binary
metrics:
- type: cosine_accuracy@1
value: 0.7171
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8612
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.907
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9488
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7171
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28706666666666664
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18140000000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09488000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7171
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8612
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.907
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9488
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8346138412124019
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7977967063492009
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8001907977756205
name: Cosine Map@100
---
# MPNet base trained on GooAQ using QAT with InfoNCE + GOR
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-gooaq-qat")
# Run inference
queries = [
"is duchenne muscular dystrophy a dominant or recessive trait?",
]
documents = [
'Duchenne muscular dystrophy is inherited in an X-linked recessive pattern. Males have only one copy of the X chromosome from their mother and one copy of the Y chromosome from their father. If their X chromosome has a DMD gene mutation, they will have Duchenne muscular dystrophy.',
'The dream suggests captivity and it refers to your fear of punishment. Another interpretation of this dream refers to a need to do what you feel is right in waking life. Being in jail suggests that your feelings may be trapped by a limited mind and body. ... Jail also suggests repressed feelings.',
"An automatic transmission will downshift for you when you drive uphill. However, for moderately steep slopes, it's wise to shift to the gear range marked D2, 2, or L to ascend and descend the hill. For steep slopes that you can't ascend at a speed faster than 10 mph (about 15 kph), shift to D1 or 1.",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.8103, 0.1611, 0.2026]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `gooaq-dev-float32`, `gooaq-dev-int8` and `gooaq-dev-binary`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | gooaq-dev-float32 | gooaq-dev-int8 | gooaq-dev-binary |
|:--------------------|:------------------|:---------------|:-----------------|
| cosine_accuracy@1 | 0.7419 | 0.7336 | 0.7171 |
| cosine_accuracy@3 | 0.8825 | 0.8753 | 0.8612 |
| cosine_accuracy@5 | 0.9237 | 0.919 | 0.907 |
| cosine_accuracy@10 | 0.96 | 0.9569 | 0.9488 |
| cosine_precision@1 | 0.7419 | 0.7336 | 0.7171 |
| cosine_precision@3 | 0.2942 | 0.2918 | 0.2871 |
| cosine_precision@5 | 0.1847 | 0.1838 | 0.1814 |
| cosine_precision@10 | 0.096 | 0.0957 | 0.0949 |
| cosine_recall@1 | 0.7419 | 0.7336 | 0.7171 |
| cosine_recall@3 | 0.8825 | 0.8753 | 0.8612 |
| cosine_recall@5 | 0.9237 | 0.919 | 0.907 |
| cosine_recall@10 | 0.96 | 0.9569 | 0.9488 |
| **cosine_ndcg@10** | **0.8537** | **0.8481** | **0.8346** |
| cosine_mrr@10 | 0.8192 | 0.8128 | 0.7978 |
| cosine_map@100 | 0.8212 | 0.8149 | 0.8002 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 90,000 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.83 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 60.45 tokens</li><li>max: 180 tokens</li></ul> |
* Samples:
| question | answer |
|:--------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how long does halifax take to transfer mortgage funds?</code> | <code>Bear in mind that the speed of application will vary depending on your own personal circumstances and the lender's present day-to-day performance. In some cases, applications can be approved by the lender within 24 hours, while some can take weeks or even months.</code> |
| <code>can you get a false pregnancy test?</code> | <code>In very rare cases, you can have a false-positive result. This means you're not pregnant but the test says you are. You could have a false-positive result if you have blood or protein in your pee. Certain drugs, such as tranquilizers, anticonvulsants, hypnotics, and fertility drugs, could cause false-positive results.</code> |
| <code>are ahead of its time?</code> | <code>Definition of ahead of one's/its time : too advanced or modern to be understood or appreciated during the time when one lives or works As a director, he was ahead of his time.</code> |
* Loss: [<code>QuantizationAwareLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#quantizationawareloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"quantization_precisions": [
"float32",
"int8",
"binary"
],
"quantization_weights": [
1.0,
1.0,
1.0
],
"n_precisions_per_step": -1
}
```
### Evaluation Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 10,000 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.93 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.84 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>should you take ibuprofen with high blood pressure?</code> | <code>In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.</code> |
| <code>how old do you have to be to work in sc?</code> | <code>The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.</code> |
| <code>how to write a topic proposal for a research paper?</code> | <code>['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']</code> |
* Loss: [<code>QuantizationAwareLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#quantizationawareloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"quantization_precisions": [
"float32",
"int8",
"binary"
],
"quantization_weights": [
1.0,
1.0,
1.0
],
"n_precisions_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: None
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `project`: huggingface
- `trackio_space_id`: trackio
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: no
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | gooaq-dev-float32_cosine_ndcg@10 | gooaq-dev-int8_cosine_ndcg@10 | gooaq-dev-binary_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:--------------------------------:|:-----------------------------:|:-------------------------------:|
| -1 | -1 | - | - | 0.2155 | 0.5116 | 0.3432 |
| 0.0007 | 1 | 8.8919 | - | - | - | - |
| 0.0505 | 71 | 4.6028 | - | - | - | - |
| 0.1002 | 141 | - | 0.3973 | 0.7842 | 0.7799 | 0.7606 |
| 0.1009 | 142 | 0.8168 | - | - | - | - |
| 0.1514 | 213 | 0.4967 | - | - | - | - |
| 0.2004 | 282 | - | 0.2611 | 0.8125 | 0.8082 | 0.7879 |
| 0.2018 | 284 | 0.4427 | - | - | - | - |
| 0.2523 | 355 | 0.4156 | - | - | - | - |
| 0.3006 | 423 | - | 0.2213 | 0.8282 | 0.8230 | 0.8047 |
| 0.3028 | 426 | 0.3245 | - | - | - | - |
| 0.3532 | 497 | 0.3354 | - | - | - | - |
| 0.4009 | 564 | - | 0.2026 | 0.8333 | 0.8291 | 0.8129 |
| 0.4037 | 568 | 0.2926 | - | - | - | - |
| 0.4542 | 639 | 0.317 | - | - | - | - |
| 0.5011 | 705 | - | 0.1854 | 0.8384 | 0.8340 | 0.8192 |
| 0.5046 | 710 | 0.2779 | - | - | - | - |
| 0.5551 | 781 | 0.278 | - | - | - | - |
| 0.6013 | 846 | - | 0.1768 | 0.8440 | 0.8398 | 0.8245 |
| 0.6055 | 852 | 0.2696 | - | - | - | - |
| 0.6560 | 923 | 0.2752 | - | - | - | - |
| 0.7015 | 987 | - | 0.1679 | 0.8504 | 0.8449 | 0.8287 |
| 0.7065 | 994 | 0.2318 | - | - | - | - |
| 0.7569 | 1065 | 0.2398 | - | - | - | - |
| 0.8017 | 1128 | - | 0.1621 | 0.8498 | 0.8454 | 0.8317 |
| 0.8074 | 1136 | 0.2274 | - | - | - | - |
| 0.8579 | 1207 | 0.2376 | - | - | - | - |
| 0.9019 | 1269 | - | 0.1572 | 0.8518 | 0.8464 | 0.8305 |
| 0.9083 | 1278 | 0.238 | - | - | - | - |
| 0.9588 | 1349 | 0.2168 | - | - | - | - |
| -1 | -1 | - | - | 0.8537 | 0.8481 | 0.8346 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.091 kWh
- **Carbon Emitted**: 0.024 kg of CO2
- **Hours Used**: 0.293 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.3.0.dev0
- Transformers: 4.57.6
- PyTorch: 2.10.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.3.0
- Tokenizers: 0.22.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### QuantizationAwareLoss
```bibtex
@article{jacob2018quantization,
title={Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference},
author={Jacob, Benoit and Kligys, Skirmantas and Chen, Bo and Zhu, Menglong and Tang, Matthew and Howard, Andrew and Adam, Hartwig and Kalenichenko, Dmitry},
journal={arXiv preprint arXiv:1712.05877},
year={2018}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |